top of page



Pulkit Agrawal

Sensorimotor Learning

Provides an in-depth view of the state-of-the-art learning methods for control and the know-how of applying these techniques. Topics span reinforcement learning, self-supervised learning, imitation learning, model-based learning, and advanced deep learning architectures, and specific machine learning challenges unique to building sensorimotor systems. Discusses how to identify if learning-based control can help solve a particular problem, how to formulate the problem in the learning framework, and what algorithm to use. Applications of algorithms in robotics, logistics, recommendation systems, playing games, and other control domains covered.

bottom of page