Kimberle Kolle

Artificial Intelligence

Introduces representations, methods, and architectures used to build applications and to account for human intelligence from a computational point of view. Covers applications of rule chaining, constraint propagation, constrained search, inheritance, statistical inference, and other problem-solving paradigms. Also addresses applications of identification trees, neural nets, genetic algorithms, support-vector machines, boosting, and other learning paradigms. Considers what separates human intelligence from that of other animals. Students taking graduate version complete additional assignments.